Prediction of long-term scalp hair regrowth at 24 months in patients with alopecia areata receiving ritlecitinib treatment in the ALLEGRO clinical trial program

Rodney Sinclair, Bianca Maria Piraccini, Baurent Misery, 5 Claire Abasq, 5 Julien Ringuet, Dalia Wajsbrot, Roger A. Edwards, Gianluca Bonfanti, Robert Wolk, Alexandre Lejeune, Hert King 2

¹Sinclair Dermatology, Melbourne, VIC, Australia; ²Dermatology Unit, IRCCS Azienda Ospedaliero-University Hospital, Brest, France; ⁵Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; ¹University of Brest, LIEN, Brest, France; ⁵Department of Dermatology, University Hospital, Brest, France; ⁶Centre de Recherche Dermatologique de Québec, Québec, Canada; ⁷Pfizer Inc, New York, NY, USA; ⁸Health Services Consulting Corporation, Boxborough, MA, USA; ⁹Engineering Ingegneria Informatica, Milan, Italy; ¹Pfizer Inc, Groton, CT, USA; ¹Pfizer Inc, Paris, France; ¹Yale School of Medicine, New Haven, CT, USA

BACKGROUND

- Alopecia areata (AA) is an autoimmune disease that has an underlying immuno-inflammatory pathogenesis and is characterized by nonscarring hair loss, ranging from small bald patches to complete scalp, face, and/or body hair loss!
- Ritlecitinib, an oral JAK3/TEC family kinase inhibitor, demonstrated efficacy and safety up to 48 weeks in patients aged ≥12 years with AA in the ALLEGRO phase 2b/3 study (NCT03732807)²
- ALLEGRO-LT (NCT04006457) is an ongoing phase 3, open-label study, investigating the long-term safety and
 efficacy of ritlecitinib in patients aged ≥12 years with AA³
- Since AA requires long-term treatment to establish its full therapeutic effect, predicting treatment outcomes based on patient characteristics and early response pattern could enhance clinical decision-making

OBJECTIVE

 To evaluate the predictive value of demographic and disease characteristics, and early response pattern to determine Severity of Alopecia Tool (SALT) score <20 response at Month 24 in patients with AA receiving ritlecitinib in the ALLEGRO clinical trial program

Figure 1. ALLEGRO-2b/3 and ALLEGRO-LT study

Data while on placeho were not included in this analysis: data from patients in Groups E and G

icalo hair loss. Patients in the de novo group were aged ≥12 years with ≥25% scalp hair loss

LEGRO-2b/3 to ALLEGRO-LT were aged ≥12 years with ≥509

designs and patients included in the post-hoc

METHODS

Study design and patients

ALLEGRO-LT enrolled patients into two arms:
• Patients aged ≥12 years with ≥50% scalp

hair loss due to AA who received ritlecitinib in either the ALLEGRO phase 2a study (NCT02974868) or ALLEGRO-2b/3 • De novo patients aged ≥12 years with ≥25%

scalp hair loss This post-hoc analysis of ALLEGRO-2b/3 and

ALLEGRO-LT included (Figure 1):

- Patients who received an initial 4-week loading dose of 200-mg ritlecitinib once daily (QD) followed by ritlecitinib 50-mg QD
 Patients who received 50-mg ritlecitinib QD
- without a loading dose
- De novo patients who received an initial 4-week loading dose of 200-mg ritlecitinib QD followed by ritlecitinib 50-mg QD

Statistical analysis

To predict SALT ≤20 response at Month 24, random forest analyses with 5-fold cross-validation with 3 repetitions
were performed under two scenarios:

Scenario 1:

Using baseline demographic and disease characteristics covariates

Scenario 2:

- Using baseline demographic and disease characteristics covariates, along with Month 6 SALT, Eyebrow Assessment (EBA) and Eyelash Assessment (ELA) scores
- Baseline demographic and disease characteristics listed in Table 1, along with the use of loading dose were
 covariates included in the models. While covariates for gender, race, type of AA, prior pharmacological treatment
 for AA, comorbid conditions and use of loading dose were treated as categorical, the remainder of the covariates
 were treated as continuous.
- Each model included only patients with a complete set of observations, defined as having non-missing values for all covariates and SALT responses, with no data imputation performed
- Data are presented for:
- Area under the receiver operating characteristic curve (AUROC)
- AUROC is a continuous value from 0 to 1, with higher values indicating a better predictive capacity of the model
- Importance of covariates was assessed based on the whole population of patients
- This was determined by the mean decrease in accuracy when covariate values were randomly permuted, with larger decreases indicating a significant contribution of the covariate to the model's accuracy
- · Data cutoff was December 9, 2022

Presented at Winter Clinical - Hawaii 2025 Congress; February 14-19 2025: Waikoloa Village, Hl. USA

RESULTS

Baseline demographics and disease characteristics are shown in Table 1

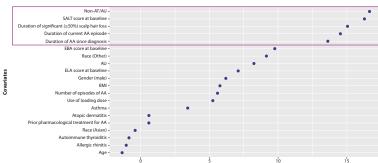
Table 1. Demographic and baseline disease characteristics in patients included in the analysis

	All patients (N=832)
Age, mean (SD), years	33.2 (14.2)
Female, n (%)	520 (62.5)
Race, n (%)	
White	570 (68.5)
Asian	200 (24.0)
Other	62 (7.5)
BMI, mean (SD), kg/m²	24.9 (5.3)
Type of AA	
AT/AU*	315 (37.9)
Other	517 (62.1)
Baseline SALT score, mean (SD)†	82.3 (23.6)
Eyebrow involvement, n (%) ⁺⁺	649 (78.0)
Eyelash involvement, n (%) ^{††}	588 (70.7)
Number of AA episodes, mean (SD)	2.9 (5.1)
Duration of current AA episode at baseline ⁵ , years, mean (SD)	3.1 (2.7)
Duration of AA since diagnosis, years, mean (SD)	9.8 (10.4)
Duration of significant (≥50%) scalp hair loss at baseline ⁶ , mean (SD), years	2.9 (3.3)
Prior pharmacological treatment for AA, n (%)	559 (67.2)
Comorbid conditions, n (%)	
Asthma	99 (11.9)
Autoimmune thyroiditis	43 (5.2)
Atopic dermatitis	109 (13.1)
Allergic rhinitis	70 (8.4)

NA, alopecia areata; AT, alopecia totalis; AU, alopecia universalis; BMI, body mass index; EBA, Eyebrow Assessment; ELA, Eyelash Assessment; SALT, Severity of

*Participants in the AT and AU categories had a SAIX score of 100 complete scalp has lost at baseline and a clinical disposits of AT or AU by the investigation.

*Constants assessed as baseline and at Month for the analysis of Events. 2. Explore and explain involvement were based on the EMALT access, which are 4-point scales with clinicate reported scores that represent the setted of précious or epilain hast; 0 incode; 11 finitional, 2 incidents, and 3 finemat. BEATALT access with clinicate reported to the access of the access o


Scenario 1: using baseline demographic and disease characteristics covariates (Figure 2)

- The AUROC ranged from 0.769 to 0.784
- A maximum value for mean accuracy of 75.5% was obtained at a cutoff of 0.6 for the predicted probability of SALT ≤20 response at Month 24 in the best random forest model (AUROC = 0.784)
- The most important covariates for predicting the probability of SALT ≤20 response at Month 24 were:
- Non-AT/AU
- · Baseline SALT score
- Duration of significant (≥50%) scalp hair loss at baseline
- · Duration of current AA episode at baseline
- · Duration of AA since diagnosis

Scenario 2: using baseline demographic and disease characteristics covariates, along with Month 6 SALT. EBA and ELA scores (Figure 3)

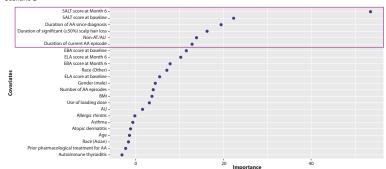

- The AUROC ranged from 0.826 to 0.836
- A maximum value for mean accuracy of 79.6% was obtained at the 0.5 cutoff for the predicted probability of SALT ≤20 response at Month 24 in the best random forest model (AUROC = 0.836)
- The most important covariates for predicting SALT ≤20 response at Month 24 were similar to Scenario 1 with the addition of SALT score at Month 6:
- SALT score at Month 6
- · Baseline SALT score
- Duration of AA since diagnosis
- Duration of significant (≥50%) scalp hair loss at baseline
- Non-AT/AU
- · Duration of current AA episode at baseline

Figure 2. Importance of covariates for predicting SALT ≤20 response at Month 24 from the best random forest model in Scenario 1

AA, alopecia areata; AT, alopecia totalis; AU, alopecia universalis; BMI, body mass index; EBA, Eyebrow Assessment; ELA, Eyelash Assessment; SALT, Severity of Alopecia Tool.

Figure 3. Importance of covariates for predicting SALT ≤20 response at Month 24 from the best random forest model in Scenario 2

Al, alopecia areata; Al, alopecia totalic, All, alopecia universalic (BML) body mass index; EBA, Sybbrow Assessment; LBA, Eyelstoh Assessment; SALT, Severity of Alopecia Tools, and a superior of the property of the propert

CONCLUSIONS

- Specific demographic and disease characteristics, such as SALT score at baseline and Month 6, non-AT/AU, duration of AA
 since diagnosis, duration of significant (≥50%) scalp hair loss at baseline, and duration of current AA episode at baseline,
 are useful for the estimation of the probability of a SALT ≤20 response at Month 24 with ritlecitinib treatment in patients
 with AA
- The predictive capacity of these covariates may be valuable for optimizing treatment decisions in AA, potentially improving outcomes by identifying patients who are more likely to respond favorably to treatment
- However, the models are limited by the available covariates in the clinical trials and by the specific trial designs, which may not fully represent real-world patient populations
- As covariate importance shows significance without indicating effect direction, future analyses should investigate whether the effects are positive or pegative.
- As such, the models are not validated for use in clinical practice and should not be used as a substitute for professional medical judgement or decision-making

DECEDI

- 1. Islam N, et al. Autoimmun Rev. 2015;14:81-89.
- King B, et al. Lancet. 2023; 401(10387):1518-1529.
- 3. Piliang M, et al. SKIN. 2024; doi.org/10.25251/

We thank all investigators, participants and their families. This study was supported by Pfizer R. Sinclar has provided professional services to Aerosciech, Abbrike, AntraZeneca, Akecoba, Ameger, Acrusta, Aerosciech, Aerosciech, Abbrike, AntraZeneca, Akecoba, Amery, Arman, A

Incyte corp, Innovaderm, Janssen, Leöfharma, Merck, Pfzer, Sanofi Genzyme, SuriFharma, and UCB. R.A. Edwards is an employee of Health Services Consulting Corporation and received consultancy fees from Pfzer in connection with this study. G. Borifanti is an employee of Engineering Ingegneria Informatica, a paid sub-contractor to Health Services Consulting Corporation, in conjunction with this analysis. O'Walplora, R. Walk and A. Legiena ere employees of, and hold study or stock options in Pfzer Er. Ring Pered on advisory bounds, is a consultant, is a clinical trial investigator, and/or is on a data monitoring committee for AbbVe, Mittudio, Inc, Almiral, Anapty-Bilo, Area Pharmaceutical, Alian Pharmaceutical, Service Pharmaceutical, Service Pharmaceutical, and Carporation, Incompany, Incyte Corp, Janssen Pharmaceutical, Eld Pharma, Merch, Ostular Vioters in K., Pfizer, Inc., Q.22 Bo. Inc., Regerenos, Sanofi Cengyms, Sun Pharmaceutical, IVM Bottechnology, Inc., Viela Bis, and Vientyy Bosciences, Inc., and has served on peakers bureaus for AbbVe. Incyte, Eld IVM, Pfazer, Regeneron, and Sanofi Genzyms, Medical writing and declinal support was provided by Natuces Goldskal, an Initiac company of which was funded by Pfazer.

