Association between Rosacea, Environmental Factors, and Facial Cutaneous Dysbiosis A Pilot Study from the Largest National Festival of Twins
Main Article Content
Keywords
rosacea, microbiome, dysbiosis, environment, facial cutaneous microbiome, enteric microbiome, inflammation
Abstract
Background: To investigate the microbiome composition in individuals with and without rosacea and correlate findings to individual factors that may affect facial cutaneous and enteric microbiome composition.
Methods: Participants with and without rosacea (as determined by a board-certified dermatologist) were surveyed regarding factors that may affect the facial cutaneous/enteric microbiome. Microbiome samples were collected, analyzed for 16S sequences, and mapped to an optimized version of existing databases. R was used to perform Mann-Whitney/Kruskal-Wallis test for categorical comparisons. Correlation between two continuous variables was determined with linear regression models. Primary Component Analysis (PCoA) plots employed Monte Carlo permutation test to estimate p-values. All p-values are adjusted for multiple comparisons with the false discovery rate (FDR algorithm) using Benjamini-Hochberg.
Results: 84 individuals with rosacea and 44 controls were evaluated. Individuals with rosacea were more likely to currently own pets (p = 0.029) and consume more alcohol (p = 0.006). Absolute bacteria abundance were similar in facial cutaneous (p = 0.36) and enteral microbiome (p = 0.29). Facial cutaneous microbiome showed significantly decreased richness and evenness (OTU: p = 0.019; Shannon: p = 0.049) and a three to four-fold decrease in abundance of 8 distinct cutaneous bacterial genera in rosacea. Enteral microbiome analysis showed significant reduction in abundance of Ruminococcaceae (FDR = 0.002) and Blautia (FDR < 0.001) and increase in Prevotellaceae (FDR = 0.024) in rosacea.
Conclusion: Environmental factors may alter relative abundances of specific microbial genera and lead to microbiome diversity. Further studies with increased sample sizes and higher severity cases may further elucidate the role of dysbiosis in rosacea.
References
2. Elewski, B. E., Z. Draelos, B. Dreno, T. Jansen, A. Layton and M. Picardo (2011). "Rosacea - global diversity and optimized outcome: proposed international consensus from the Rosacea International Expert Group." J Eur Acad Dermatol Venereol 25(2): 188-200.
3. Aldrich, N., M. Gerstenblith, P. Fu, M. S. Tuttle, P. Varma, E. Gotow, K. D. Cooper, M. Mann and D. L. Popkin (2015). "Genetic vs Environmental Factors That Correlate With Rosacea: A Cohort-Based Survey of Twins." JAMA Dermatol 151(11): 1213-1219.
4. Searle T, Ali FR, Carolides S, Al-Niaimi F. Rosacea and the gastrointestinal system. Australas J Dermatol. 2020 Nov;61(4):307-311. doi: 10.1111/ajd.13401. Epub 2020 Aug 6. PMID: 32761824.
5. Parodi, A., S. Paolino, A. Greco, F. Drago, C. Mansi, A. Rebora, A. Parodi and V. Savarino (2008). "Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication." Clin Gastroenterol Hepatol 6(7): 759-764.
6. Marks, R., R. J. Beard, M. L. Clark, M. Kwok and W. B. Robertson (1967). "Gastrointestinal observations in rosacea." Lancet 1(7493): 739-743.
7. Weiss, E. and R. Katta (2017). "Diet and rosacea: the role of dietary change in the management of rosacea." Dermatol Pract Concept 7(4): 31-37.
8. Egeberg, A., L. B. Weinstock, E. P. Thyssen, G. H. Gislason and J. P. Thyssen (2017). "Rosacea and gastrointestinal disorders: a population-based cohort study." Br J Dermatol 176(1): 100-106.
9. Uhr GT, Dohnalová L, Thaiss CA. The Dimension of Time in Host-Microbiome Interactions. mSystems. 2019 Feb 19;4(1):e00216-18. doi: 10.1128/mSystems.00216-18. PMID: 30801030; PMCID: PMC6381226.
10. Scharschmidt, T. C., K. S. Vasquez, H. A. Truong, S. V. Gearty, M. L. Pauli, A. Nosbaum, I. K. Gratz, M. Otto, J. J. Moon, J. Liese, A. K. Abbas, M. A. Fischbach and M. D. Rosenblum (2015). "A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes." Immunity 43(5): 1011-1021.
11. Hagerty SL, Hutchison KE, Lowry CA, Bryan AD. An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS One. 2020 Mar 2;15(3):e0229204. doi: 10.1371/journal.pone.0229204. PMID: 32119675; PMCID: PMC7051054.
12. Holmes, A. D. (2013). "Potential role of microorganisms in the pathogenesis of rosacea." J Am Acad Dermatol 69(6): 1025-1032.
13. Picardo, M. and M. Ottaviani (2014). "Skin microbiome and skin disease: the example of rosacea." J Clin Gastroenterol 48 Suppl 1: S85-86.
14. Daou, H., Paradiso, M., Hennessy, K., Seminario-Vidal, L., 2021. Rosacea and the Microbiome: A Systematic Review. Dermatology and Therapy 11, 1–12.. doi:10.1007/s13555-020-00460-1
15. Nam, J. H., Y. Yun, H. S. Kim, H. N. Kim, H. J. Jung, Y. Chang, S. Ryu, H. Shin, H. L. Kim and W. S. Kim (2018). "Rosacea and its association with enteral microbiota in Korean females." Exp Dermatol 27(1): 37-42.
16. Bataille V, Lens M, Spector TD. The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J Eur Acad Dermatol Venereol. 2012;26(9):1067-1073.
17. Zaidi, A. K., K. Spaunhurst, D. Sprockett, Y. Thomason, M. W. Mann, P. Fu, C. Ammons, M. Gerstenblith, M. S. Tuttle and D. L. Popkin (2017). "Characterization of the facial microbiome in twins discordant for rosacea." Exp Dermatol.
18. Wollina U. Is rosacea a systemic disease? Clin Dermatol. 2019 Nov-Dec;37(6):629-635. doi: 10.1016/j.clindermatol.2019.07.032. Epub 2019 Jul 31. PMID: 31864441.
19. Pelle MT, Crawford GH, James WD. Rosacea: II. Therapy. J Am Acad Dermatol. 2004 Oct;51(4):499-512; quiz 513-4. doi: 10.1016/j.jaad.2004.03.033. PMID: 15389184.
20. Subramanyan K. Role of mild cleansing in the management of patient skin. Dermatol Ther. 2004;17 Suppl 1:26-34. doi: 10.1111/j.1396-0296.2004.04s1003.x. PMID: 14728696.